Jawabanmu

2014-03-23T23:15:47+07:00
1. f(x) = ( x^{2} +3x)(4 x^{3} -6x) pada x = 1
 \frac{df}{dx}  \lim_{x \to \o}  \frac{f(1+h)-f(1)}{h}
\frac{df}{dx} \lim_{x \to \o} \frac{((1+h)^{2} + 3(1+h))(4(1-h)^{3} - 6(1-h))  - (4)(-2)}{h}
\frac{df}{dx} \lim_{x \to \o} \frac{((1+2h+h^{2} + 3+ 3h))(4-12h + 12h^{2} - 4h^{3}) - 6 + 6h)) + 8)}{h}
\frac{df}{dx} \lim_{x \to \o} \frac{((4+5h+h^{2}))(4-12h + 12h^{2} - 4h^{3}) - 6 + 6h)) + 8)}{h}
\frac{df}{dx} \lim_{x \to \o} \frac{16-48h + 48h^{2} - 16h^{3} + 20h - 60h^{2} + 60h^{3} -20h^{4} + 4h^{2} - 12 h^{3} + 12 h^{4}- 4h^{5}+6h-6    }{h}
\frac{df}{dx} \lim_{x \to \o} \frac{10-22h-8h^{2}+32^{3} - 8h^{4}-4h^{5}     }{h}
\frac{df}{dx} \lim_{x \to \o} 10-22-8h+32 h^{2} - 8h^{3} - 4h^{4}
\frac{df}{dx} \lim_{x \to \o} 10-22
\frac{df}{dx} \lim_{x \to \o} -12
horor ini cewek. keren :v
hahahahaha :v kok horor sih :v
hebat hebaaaattt :v