Jawabanmu

2014-03-23T21:22:07+07:00
Jawaban paling cerdas!
2014-03-23T21:27:46+07:00
 \lim_{n \to \0}  \frac{sin ^{3} 2x}{tan ^{3} \frac{1}{2} x  }
\lim_{n \to \0} \frac{sin ^{3} 2x}{tan ^{3} \frac{1}{2} x } . \frac{(2x)^{3}}{(2x)^{3}} .  \frac{ (\frac{1}{2}  x)^{3} }{(\frac{1}{2}  x)^{3}}
\lim_{n \to \0} \frac{sin ^{3} 2x}{(2x)^{3}} . \frac{(2x)^{3}}{ (\frac{1}{2} x)^{3}} . \frac{ (\frac{1}{2} x)^{3} }{tan ^{3} \frac{1}{2} x }
 \lim_{n \to \0}  1 .  \frac{8}{1/8} .1 = 64

yang bukan limit trigonometri :
 \lim_{x \to \1}  \frac{x-1}{ \sqrt{ x^{2} +4} -2}
\lim_{x \to \1} \frac{x-1}{ \sqrt{ x^{2} +4} -2} .  \frac{\sqrt{ x^{2} +4} +2}{\sqrt{ x^{2} +4} +2}
 \lim_{x \to \i}  \frac{(x-1) . ( \sqrt{(x-2)(x+2)} + 2}{ x^{2} + 4 - 4}
 \lim_{x \to \1}  \frac{(x-1) ( \sqrt{ (x-2)(x+2) } + 2)}{ x^{2} }
 \lim_{x \to \i}  \frac{0}{1} =  \frac{0}{bilangan}
yg lebih mudah di mengerti ada?
menurut aku itu udh yang paling mudah di mengerti ..
yang pake angka dia jgn yg pake sinus