Diberikan kubus ABCD.EFGH dengan panjang rusuk 2p. titik-titik P, Q, R masing-masing adalah titik tengah FB, FG, AD. luas penampang irisan bidang yang melalui P, Q, R dan kubus ABCD.EFGH adalah ...

2
--" hahaha. baru mau move on simak wkwkwk
itu kode soal brp ?
541
2p^2/3 akar 10 ada ?
tak ada

Jawabanmu

2014-06-19T00:10:35+07:00

Ini adalah Jawaban Tersertifikasi

×
Jawaban tersertifikasi mengandung isi yang handal, dapat dipercaya, dan direkomendasikan secara seksama oleh tim yang ekspert di bidangnya. Brainly memiliki jutaan jawaban dengan kualitas tinggi, semuanya dimoderasi oleh komunitas yang dapat dipercaya, meski demikian jawaban tersertifikasi adalah yang terbaik dari yang terbaik.
Bidang irisan berbentuk segienam beraturan, dengan panjang sisi p√2


L=\dfrac{n}2r^2\sin \dfrac{360^\circ}n

L=\dfrac62\left(p\sqrt2\right)^2\sin \dfrac{360^\circ}6

L=3\left(2p^2\right)\sin 60^\circ

L=6p^2\left(\dfrac12\sqrt3\right)

L=3p^2\sqrt3
2014-06-19T10:03:35+07:00
Gambarlah kubus tsb dan petakan P,Q, dan R. Hubungkan PQR sehingga menjadi ΔPGR dan hubungkan pula B ke R.
Dengan menggunakan formula Pytyagoras
BR = p√5 cm, PQ = p√2 cm , QR = 2p√2 cm dan PR = p√6 cm
gambar lagi Δ PQR diluar kubus
S = (1/2)(p√2+2p√2 + p√6) = 3p√2 + p√6
                                                       2
Luas ΔPGR = √{S(S-PQ)(S-QR)(S-PR)}
{S(S-PQ)(S-QR)(S-PR)} = 3p√2 + p√6 . p√2 + p√6 . -p√2 + p√6 . 3p√2 - p√6
                                                   2                  2                2                2
                                       = 18p²-6p² . 6p²-2p²
                                                 4            4
                                       = (12P²)(4p²)
                                                 16
                                       = 48P^4
                                             16
                                       = 3P^4
Luas Δ PQR = √3P^4
                     = P²√3  satuan