1. Persamaan 2x²+ qx + (q-1) = 0 mempunyai akar - akar x1 dan x2.Jika x1²+ x2² = 4.Maka nilai q adalah ?


2. Nilai maksimum dari fungsi f(x) = -2x² + (k + 5)x + 1 - 2k adalah 5.Nilai k yang positif adalah ?

3. Absis titik balik grafik fungsi </span>f(x) = px^2 + (p - 3)x + 2<span> adalah p.Nilai p = ....

1
Jika nilai diskriminan persamaan kuadrat 2x² - 9x + c = 0 adalah 121,maka c = ...

Jawabanmu

Jawaban paling cerdas!
2014-04-28T02:04:33+07:00
1. Persamaan 2x²+ qx + (q-1) = 0 mempunyai akar - akar x1 dan x2.Jika x1²+ x2² = 4.           Maka nilai q adalah ?
   Jawab
  
x1²+ x2² = (x1 + x2)² - 2x1x2
       4        = (-b/a)² - 2 (c/a)
       4        = (-q/2)² - 2((q-1)/2)
       4        = q²/4 - q + 1
       16      = q² - 4q + 4
    q² - 4q - 12 = 0 ⇔(q - 6)(q + 2) = 0
   Jadi nilai q = -2 atau q = 6

2. Nilai maksimum dari fungsi f(x) = -2x² +  (k + 5)x + 1 - 2k adalah 5.Nilai k yang               positif adalah ?

   Jawab
   - D/4a = 5 ⇔ -(b² - 4ac)/4(-2) = 5
                        -((k + 5)² - 4(-2)(1 - 2k))/-8 = 5
                         k² + 10k + 25 + 8 - 16k = 40
                         k² + 6K - 7 = 0
                         (k + 7)(k - 1) = 0
                         k = -7 atau k = 1
   Jadi nilai k positif jika k = 1
 
f(x) = px² + (p - 3)x + 2
absis titik balik fungsi x = -b/2a =
                                 p = (3 - p)/2p
                                 2p² = 3 - p
                                 2p² + p - 3 = 0
                                 (2p - 3)(p + 2) = 0
maqka nilai p = 3/2 atau p = -2
                            




5 4 5