Jawabanmu

2014-04-25T11:35:47+07:00
2.
a x^{2} +bx+c= x^{2} -( \alpha + \beta )+( \alpha  \beta )
Maka, kita bisa simpulkan berdasarkan blok blok suku. Kalau
a=1

b=-( \alpha + \beta )

c= \alpha  \beta
a.
\alpha ^{4}+ \beta ^{4}= \frac{b^{4}-4ab^{2}c+2a^{2}c^{2}}{a^{4}}
\alpha ^{4}+ \beta ^{4}= \frac{(-( \alpha + \beta ))^{4}-4(1)(-( \alpha + \beta ))^{2}( \alpha  \beta)+2(1)^{2}( \alpha  \beta)^{2}}{(1)^{4}}
\alpha ^{4}+ \beta ^{4}= ( \alpha + \beta)^{4}-4( \alpha + \beta)^{2}( \alpha  \beta)+2( \alpha  \beta)^{2}
\alpha^{4}+\beta^{4}=(\alpha^4+4\alpha^3\beta+6\alpha^2\beta^2+4\alphab^3+\beta^4)-4(\alpha\beta)(\alpha^2+2\alpha\beta+\beta^2)+2\alpha^2\beta^2
\alpha ^{4}+ \beta ^{4}=(\alpha^4+4\alpha^3\beta+6\alpha^2\beta^2+4\alpha\beta^3+\beta^4)-4(\alpha^3\beta+2\alpha^{2}\beta^{2}+\alpha\beta^3)+2\alpha^2\beta^2
\alpha ^{4}+ \beta ^{4}=(\alpha^4+4\alpha^3\beta+8\alpha^2\beta^2+4\alpha\beta^3+\beta^4)-4\alpha^3\beta-8\alpha^{2}\beta^{2}-4\alpha\beta^3
\alpha ^{4}+ \beta ^{4}=\alpha ^{4}+ \beta ^{4}
b.
( \alpha - \beta )^2= \frac{(-(\alpha + \beta))^2-4(1)( \alpha  \beta )}{(1)^2}
( \alpha - \beta )^2= \alpha^2+2\alpha\beta+\beta^2-4\alpha\beta
( \alpha - \beta )^2= \alpha^2-2\alpha\beta+\beta^2
\alpha^2-2\alpha\beta+\beta^2= \alpha^2-2\alpha\beta+\beta^2
kak punya wa / pin ga kak? biar langsung kirim fotoo
yaudah nomor 3 lewat bb ya.. biar difoto.
7466CAF1
79636569
thankssss !